Structure Reports

Online
ISSN 1600-5368

Christopher G. Hamaker* and Charles S. McCully

Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA

Correspondence e-mail: chamake@ilstu.edu

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.051$
$w R$ factor $=0.199$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

3-Acetyl-7-(diethylamino)coumarin

The title compound, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$, is nearly planar with a dihedral angle of $1.55(10)^{\circ}$ between the lactone and benzene rings. The molecules form chains through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the chains are dimerized by type-II carbonyl-carbonyl interactions.

Comment

Coumarins are an important classe of molecules because of their applications in synthetic chemistry, medicinal chemistry, and photochemistry. Our group is interested in the synthesis and utility of novel Schiff base ligands (Hamaker \& Halbach, 2006). In the course of our studies, we have prepared the title compound, (I), and determined its crystal structure.

(I)

Compound (I) (Fig. 1) is essentially planar, with a dihedral angle between the lactone and benzene rings of $1.55(10)^{\circ}$. The maximum deviation from planarity of the atoms in the benzene and lactone skeleton (C1-C9/O1) is 0.0271 (15) \AA for atom C3. The plane of the acetyl group makes an angle with the $\mathrm{C} 1-\mathrm{C} 9 / \mathrm{O} 1$ plane of $4.0(2)^{\circ}$, which is smaller than that of related 7-acetylcoumarin derivatives (Kokila et al., 1996; Han et al., 2005). The C7/N15/C16/C18 group is essentially planar, with an r.m.s. deviation of $0.0204 \AA$. Also, the $\mathrm{C} 7-\mathrm{N} 15$ bond

Figure 1

View of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2
View of a dimer of (I), showing the type-II carbonyl-carbonyl (orange dashed lines) interactions.

Figure 3
View of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (cyan dashed lines) between the molecules.

Figure 4
View of the intersecting double chains, viewed along the ac diagonal. C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown in cyan and carbonyl-carbonyl interactions are shown in orange. H atoms not involved in hydrogen bonding have been omitted for clarity.
is significantly shorter than the $\mathrm{C} 16-\mathrm{N} 15$ and $\mathrm{C} 18-\mathrm{N} 15$ bonds (Table 1), indicating a donation of electrons from the N atom into the aromatic ring.

The molecules dimerize (Fig. 2) via a type-II carbonylcarbonyl interaction (Allen et al., 1998), with C2 . .O11 ${ }^{\mathrm{i}}$ and $\mathrm{O} 11 \cdots \mathrm{C} 2^{\mathrm{i}}$ distances of 3.139 (3) \AA [symmetry code: (i) $\frac{1}{2}-x$, $\left.-\frac{1}{2}-y, 1-z\right]$. The molecules are linked together into chains in the crystal structure by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 3). These double chains form a criss-cross network in the crystal structure when viewed along the ac diagonal (Fig. 4).

Experimental

Compound (I) was prepared by a previously described procedure (Aktoudianakis \& Dicks, 2006). Single crystals were grown by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$
$M_{r}=259.3$
Monoclinic, C2/c
$a=17.269$ (2) A
$b=7.5203(8) \AA$
$c=22.0868(10) \AA$
$\beta=108.524$ (7) ${ }^{\circ}$
$V=2719.8(5) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
3217 measured reflections
3118 independent reflections
$Z=8$
$D_{x}=1.266 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Prism, red
$0.50 \times 0.50 \times 0.27 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.199$
$S=1.18$
3118 reflections
173 parameters
H -atom parameters constrained

1984 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
3 standard reflections frequency: 120 min intensity decay: 3%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1085 P)^{2}\right. \\
& +0.307 P P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

C7-N15	$1.365(2)$	C18-N15	$1.461(3)$
C16-N15	$1.466(3)$		
C18-N15-C16	$116.05(17)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6 $\cdots \mathrm{O} 11^{\mathrm{i}}$	0.93	2.40	$3.312(2)$	168
Symmetry code: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z$.				

The H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the aromatic and methylene H atoms and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Bruno et al., 2002) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Illinois State University for partial financial support.

References

Aktoudianakis, E. \& Dicks, A. P. (2006). J. Chem. Educ. 83, 287-289.
Allen, F. H., Baalham, C. A., Lommerse, J. P. M. \& Raithby, P. R. (1998). Acta Cryst. B54, 320-329.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

organic papers

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hamaker, C. G. \& Halbach, D. P. (2006). Inorg. Chim. Acta, 359, 846-852.

Han, H.-M., Lu, C.-R., Zhang, Y. \& Zhang, D.-C. (2005). Acta Cryst. E61, o1864-o1866.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kokila, M. K., Puttaraja, Kulkarni, M. V. \& Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078-2081.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

